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Question 1 [14 marks] 

a) When is a set of real numbers bounded? State the definition. [3] 

b) Let X CR. Prove that X is bounded if and only if there exists some K > 0 such 

that |x| < K for allxe X. [6] 

c) Prove that the union of two bounded sets of real numbers is bounded. [5] 

Question 2 [17 marks] 

Consider the following sequence: 

y—i 
i for all nEN.   a, = 

In answering the following questions, you are supposed to give reasons. 

a) Is the sequence (a,)j monotonic? [5] 

b) Is the sequence 

  
2n—1 

2n+1/qy 

a subsequence of (an)n? [7] 

c) Is the sequence (@n)~N convergent? [5] 

Question 3 [14 marks] 

a) State Bernoulli’s inequality. [3] 

b) Prove that 

[5] 

c) Show that the sequence (1 — 1)r) is convergent and find its limit. (6] 
N



Question 4 [19 marks] 

a) Let l,m € N such that 1 < m. If a € R— {1}, show that 

m z a! _ qmtl 

) a= j=4 
—a 

k=l 

What is the sum if a= 1? 

b) Let 6 = (b,)n be a sequence of real numbers. Prove, by induction on n, that 

n n 2n 

= + So box = S> by 
k=1 k=1 k=1 

for alln EN. 

[7] 

[5] 

c) For which real numbers g € R is }> g* convergent? Prove your assertion. If >> g¢* is 
Co 

convergent, find the sum )> g*. 
k=1 

Question 5 [11 marks] 

Let X C R and let f:X — R be a function. 

a) When is f continuous at a € R? State the definition. 

b) Assume that a is an isolated point of X. 

i) Prove that f is continuous at a. 

ii) Is lim f = f(a) true? Explain your answer. 

Question 6 [9 marks] 

a) What is an interval of R? State the definition. 

b) Show that R — {0} is not an interval of R. 

c) State the Intermediate Value Theorem. 

[7] 

[3] 

[5] 
[3] 

[3] 

[3] 

[3]



Question 7 [15 marks] 

Let a,b € R such that a < b and let f,g:{a,b] — R be functions which are differentiable 
on (a,b) and continuous at a and b. Consider h: [a,b] — R defined by 

h(x) == (9(6) — g(a) F(z) — (F@) — F(@))9(@). 

a) Verify that h is differentiable on (a,b) and continuous at a and b. [4] 

b) Show that h(a) = h(b) and apply the theorem of Rolle. [6] 

c) If f’ and g’ do not have a common zero on (a,b) and g(a) ¥ g(b), show that, there 
exists some c € (a,b) such that 
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